Note

Proton and carbon-13 n.m.r. spectra of six pseudo-2-acetamido-2-deoxy-DL-hexopyranoses

KLAUS BOCK,

Department of Chemistry, Carlsberg Laboratory, Gl. Carlsbergvej 10, DK-2500 Valby (Denmark)

SEIICHIRO OGAWA, AND MASARU ORIHARA

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223 (Japan)

(Received September 22nd, 1988; accepted for publication, February 15th, 1989)

Pseudo-(amino sugars), carbocyclic analogs of aminodeoxyhexopyranoses, have been found in such biologically active substances as antibiotics and enzyme inhibitors, as described by Ogawa *et al.*^{1,2}. These authors described the synthesis of the fully O-acetylated derivatives of the pseudo-2-acetamido-2-deoxy-DL-hexopyranoses having the α - and β -DL-galacto (1,2), α - and β -DL-gluco (3,4), and α - and β -DL-manno (5,6) configurations².

We now report the preparation of the unprotected pseudo-2-acetamido-2-deoxy-DL-hexopyranoses **1–6**, together with a complete analysis of their ¹H- and ¹³C-n.m.r.-spectral data for solutions in D₂O, in order to complement our previous publication on the n.m.r. data for the corresponding pseudo-hexopyranoses³.

Compounds 1 and 3-6 were prepared by O-deacetylation of the corresponding N-acetyltetra-O-acetyl derivatives, synthesized previously^{1,2,4,5}, whereas compound 2 was prepared from the 4,7-O-isopropylidene derivative^{4,5} by treatment with aqueous acetic acid (80%).

The ¹H- and ¹³C-n.m.r. data were measured at 500 and 125.7 MHz, respectively, which allowed a complete analysis of all the ¹H-n.m.r. chemical shifts and coupling constants, and the ¹³C-n.m.r. chemical shifts.

The 1 H-n.m.r. data for **1–6** (as 0.1M solutions in $D_{2}O$) at 300 K, are shown in Table I. The assignments are based on homonuclear COSY experiments⁶. The coupling constants were determined on a first-order basis from the one-dimensional spectra. The proton-decoupled 13 C-n.m.r. spectra were recorded likewise, and the results are given in Table II, together with the data for the corresponding *N*-acetylhexosamines. The assignments of the signals for pseudo-hexoses were based on heteronuclear shift correlation experiments (CHORTLE)⁷.

358 NOTE

The observed vicinal coupling constants (see Table I) for the ring protons of 1 to 6 all suggest that no significant distortion of the 4C_1 conformations take place in the pseudo-N-acetyl-sugars, in analogy with the results from the corresponding pseudo-sugars³. This conclusion is based on the dependence of the coupling constants on torsion angles, for neighboring protons (H-2 to H-4) on carbon atoms which both carry an oxygen substituent (calculated using the CAGPLUS program^{8,9}).

A comparison of the proton n.m.r. chemical shifts with those published ¹⁰ for the methyl glycosides of the monosaccharides corresponding to 1, 2, 3 and 4 show, in addition to the expected shifts for H-1 and H-5 of \sim 0.8 and \sim 1.8 p.p.m., respectively, that the H-2 atoms in a compounds 1 and 3 are shifted upfield by 0.2 p.p.m. relative to the corresponding methyl glycosides, whereas this shift difference is much smaller (0.03 p.p.m.) for the corresponding β compounds 2 and 4. On the other hand, the H-4 atoms of the pseudo-2-acetamido-2-deoxy-DL-galacto-pyranoses (1 and 2) are shifted \sim 0.12 p.p.m. downfield relative to the corresponding methyl glycosides, whereas the H-4 atoms in the *gluco* derivatives 3 and 4 are shifted \sim 0.1 p.p.m. upfield relative to the corresponding methyl glycosides.

Furthermore, the chemical shifts for H-6 and H-6' (sugar numbering — see chart) and the coupling constants $J_{5,6}$, are somewhat different from those published¹¹ for the 2-acetamido-2-deoxy- α - (and β -)D-glucopyranosides, assuming that the assignment for H-6 is H-6S and for H-6' is H-6R, in analogy with the data presented by Nishida *et al.* ¹¹. These results are comparable with the observation made for the pseudo-hexoses², most likely originating from a different rotameric distribution of the 5-C-(hydroxymethyl) group. However the coupling constants for the *gluco* and *manno* derivatives **3**, **4**, **5**, and **6** indicate that the *gg* and *gt* rotaconformers are the

TABLE I

1H-N.M.R. DATA FOR N-ACETYL-PSEUDO-HEXOSAMINES 1-6

Configuration of pseudo-sugar	Compound number	Chemical shifts ^a									
		H-1	Н-2	Н-3	H-4	Н-5	Н-6	H-6'	Н-7	H-7'	N-Ac
α-GalNAc	1	4.10	3.98	3.80	4.12	2.04	3.67	3.54	1.65	1.60	2.0
β-GalNAc	2	3.57	3.91	3.50	4.06	1.78	3.69	3.57	1.82	1.44	2.0
α-GlcNAc	3	4.08	3.70	3.63	3.37	1.89	3.74	3.69	1.91	1.53	2.0
β-GlcNAc	4	3.60	3.63	3.31	3.38	1.62	3.78	3.66	2.07	1.35	2.0
α-ManNAc	5	3.99	4.28	3.94	3.59	1.91	3.74	3.73	1.81	1.67	2.0
β-ManNAc	6	3.97	4.57	3.65	3.46	1.61	3.78	3.70	1.89	1.47	2.1
		Coup	Coupling constants (Hz) ^b								
		$\begin{matrix} \mathbf{J}_{I,2} \\ \mathbf{J}_{I,7} \\ \mathbf{J}_{I,\mathcal{T}} \end{matrix}$	J _{2,3} J _{2,7}	J _{3,4}	J _{4,5} J _{4,7}	J _{5,6} J _{5,6} J _{5,7} J _{5,7}	J _{6,6′}	J _{7,7'}			
α-GalNAc	1	3.0 3.0 3.0	11.1	3.0	2.4 0.8	7.9 6.3 4.0 13.0	11.0	14.0			
β-GalNAc	2	10.5 4.5 11.0	10.4	2.9	2.4 0.8	7.7 6.5 4.4 12.0	11.0	13.0			
α-GlcNAc	3	2.8 2.8 2.8	10.5	9.0	10.2	3.8 5.6	11.0	15.0			
β-GlcNAc	4	10.5 4.0 10.5	9.5	9.5	9.5	3.6 6.2 4.0 12.0	11.0	13.0			
α-ManNAc	5	3.5 4.0 2.9	4.7 1.5	9.6	9.6	4.6 5.8 4.0 12.1	11.8	15.0			
β-ManNAc	6	4.4 4.3 11.9	4.3 1.3	10.0	10.1	3.5 5.9 4.5 12.5	11.2	13.2			

^aP.p.m. from Me₄Si, measured from acetone as the internal reference (δ 2.22). ^bObserved first-order coupling-constants (\pm 0.3 Hz).

favored conformations observed and almost equally populated, using the method described recently 12 . In Figs. 1A and 1B are shown the angular dependence of the H-5 to H-6R and H-5 to H-6S coupling constants for pseudo-hexoses and hexoses, respectively, using the CAGPLUS program 8 . Based on the limiting values for the staggered conformations (gt, gg, tg) as discussed in ref. 13, it can be estimated that

TABLE II

13C-N.M.R. DATA FOR *N*-ACETYL-PSEUDO-HEXOSAMINES **1-6** AND CORRESPONDING TRUE SUGARS

Configuration	Compound number	Chemical shifts									
		C-1	C-2	C-3	C-4	C-5	C-6	C-7	N-Ac		
		Pseudo-hexosamines									
α-GalNAc	1	68.4	53.2	70.2	70.3	36.9	63.4	28.6	22.8		
β-GalNAc	2	71.1	56.6	73.5	69.7	39.1	63.1	30.1	23.1		
α-GlcNAc	3	68.3	56.7	73.2	74.6	38.8	63.1	32.0	22.8		
B-GlcNAc	4	70.5	59.5	75.9	74.0	40.8	63.0	33.7	23.1		
α-ManNAc	5	68.3	55.3	71.3	71.2	39.6	63.0	29.5	22.8		
β-ManNAc	6	68.1	55.5	73.6	70.7	41.2	62.9	30.4	23.0		
		True hexosamines ^b									
α-GalNAc		92.2	51.4	68.6	69.7	71.6	62.4				
B-GalNAc		96.5	54.9	72.3	69.0	76.3	62.2				
α-GlcNAc		92.1	55.3	72.0	71.4	72.8	61.9				
B-GlcNAc		96.2	58.0	75.2	71.2	77.2	62.0				
α-ManNAc		94.3	54.4	70.1	68.0	73.2	61.7				
β-ManNAc		94.3	55.3	73.2	67.8	77.5	61.7				

^aP.p.m. from Me₄Si, measured from 1,4-dioxane as the internal reference (δ 67.4). ^bData taken from ref. 11.

the population of the tg conformer for compounds 3 to 6 is 10%, and that the gg and gt conformers are almost equally populated. For compounds 1 and 2, however, the gg conformer is populated ~10%, and the gt conformer preponderates over the tg conformer, but the ratio is quite different from the results observed for the corresponding hexopyranosides¹⁴.

A comparison of the ¹³C-n.m.r. chemical shifts (see Table II) for **1–6** with the data published ¹⁵ for the corresponding *N*-acetylhexosamines shows significant changes only for C-1 and C-5 (23–26 and 33–37 p.p.m., respectively). All other chemical-shift differences are in the range 0–3 p.p.m. and do not suggest any major conformational differences between the two classes of compounds.

EXPERIMENTAL

General methods. — Melting points were determined with a Mel-Temp capillary melting-point apparatus and are uncorrected. T.l.c. was performed on Wakogel B-10 (Wako Co., Osaka, Japan), with detection by charring with 10% sulfuric acid. Organic solutions were dried (anhydrous Na₂SO₄), and evaporated at <50° under diminished pressure.

N.m.r. spectra were recorded with a Bruker AM 500 spectrometer operated at 500 MHz for ¹H spectra. Solutions (0.1m) in D₂O were measured at 300 K (internal acetone, 2.22 p.p.m.; DOH signal at 4.75 p.p.m.). A spectral width of 5 kHz, using 32 kbytes of computer memory (giving a digital resolution of 0.3 Hz/pt.)

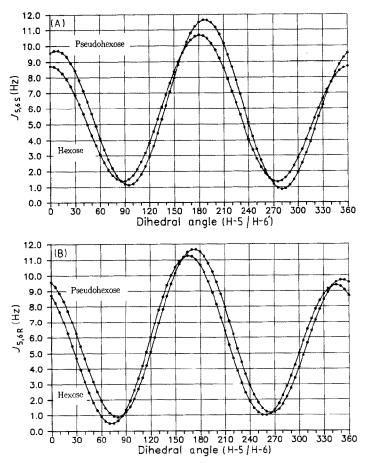


Fig. 1. (A) Angular dependence of the vicinal coupling constants $J_{5,65}$ based on the Altona and Haasnoot approach⁸ for hexoses and pseudohexoses, respectively. (B) Similar plot for the coupling constants $J_{5,68}$.

was used, together with pulse angles of 90° (10 μ s). COSY-90 experiments⁶ were performed by using Bruker standard software. The ¹³C-n.m.r. spectra were obtained on the same spectrometer operated at 125.7 MHz at 300 K (internal 1,4-dioxane, 67.4 p.p.m.). A spectral width of 25 kHz, using 64 kbytes of computer memory (giving a digital resolution of 0.8 Hz/pt.) was used, together with a pulse angle of 53° (90° = 8.5 μ s). ¹³C-¹H correlation experiments were made by using CHORTLE experiments⁷.

DL-(1,2/3,4,5)-2-Acetamido-5-(hydroxymethyl)-1,3,4-cyclohexanetriol (pseudo-2-acetamido-2-deoxy- α -DL-galactopyranose) (1). — The N-acetyltetra-O-acetyl derivative^{1,2} (120 mg, 0.31 mmol) was treated with M methanolic sodium methoxide for 1 h at room temperature, and then the solution was made neutral with Amber-

362 NOTE

lite IR 120B (H⁺) resin and evaporated. The residue (65 mg) crystallized from ethanol, to give 1 (37 mg, 54%) as prisms, m.p. 180–181°.

Anal. Calc. for $C_9H_{17}NO_5$: C, 49.31; H, 7.82; N, 6.39. Found: C, 49.03; H, 7.69; N, 6.17.

DL-(1,3,4,5/2)-2-Acetamido-5-(hydroxymethyl)-1,3,4-cyclohexanetriol (pseudo-2-acetamido-2-deoxy-β-DL-galactopyranose) (2). — The 4,7-O-isopropylidene derivative^{2,*} (65 mg, 0.25 mmol) of 2 was treated with aqueous 80% acetic acid (3 mL) for 4.5 h at 95°, and the solution then cooled and evaporated. The resulting crystals (55 mg) were recrystallized from ethanol, to give 2 (31 mg, 56%) as hygroscopic crystals, m.p. 105–113°.

Anal. Calc. for $C_9H_{17}NO_5 \cdot 0.75 H_2O$: C, 46.44; H, 8.01; N, 6.02. Found: C, 46.80; H, 7.58; N, 6.01.

DL-(1,2,4/3,5)-2-Acetamido-5-(hydroxymethyl)-1,3,4-cyclohexanetriol (pseudo-2-acetamido-2-deoxy- α -DL-glucopyranose) (3). — The N-acetyltetra-O-acetyl derivative^{2,4} (0.31 g, 0.80 mmol) was O-deacetylated as described for **1**, and the product (168 mg) crystallized from chloroform-methanol, to give **3** (0.12 g, 67%) as crystals, m.p. 200–202°.

Anal. Calc. for $C_9H_{17}NO_5$: C, 49.31; H, 7.82; N, 6.39. Found: C, 49.09; H, 7.61; N, 6.54.

DL-(1,3,5/2,4)-2-Acetamido-5-(hydroxymethyl)-1,3,4-cyclohexanetriol (pseudo-2-acetamido-2-deoxy-β-DL-glucopyranose) (4). — The N-acetyltetra-O-acetyl derivative² (250 mg, 0.65 mmol) of 4 was O-deacetylated with methanolic sodium methoxide to give a crystalline product (131 mg, 93%). Recrystallization from ethanol afforded 4 (45 mg, 32%) as prisms, m.p. 226–227.5°.

Anal. Calc. for $C_9H_{17}NO_5$: C, 49.31; H, 7.82; N, 6.39. Found: C, 49.05; H, 7.42; N, 6.21.

DL-(1,4/2,3,5)-2-Acetamido-5-(hydroxymethyl)-1,3,4-cyclohexanetriol (pseudo-2-acetamido-2-deoxy- α -DL-mannopyranose) (5). — The N-acetyltetra-O-acetyl derivative² (149 mg, 0.39 mmol) of 5 was O-deacetylated with methanolic sodium methoxide and the product (76 mg) was purified by chromatography on a column of silica gel with 8:1 chloroform-methanol, to give 5 (50 mg, 59%) as a syrup.

Anal. Calc. for $C_9H_{17}NO_5 \cdot H_2O$: C, 45.56; H, 8.07; N, 5.90. Found: C, 45.20; H, 7.72; N, 5.60.

DL-(1,2,3,5/4)-2-Acetamido-5-(hydroxymethyl)-1,3,4-cyclohexanetriol (pseudo-2-acetamido-2-deoxy- β -DL-mannopyranose) (6). — The N-acetyltetra-O-acetyl derivative⁵ (70 mg, 0.18 mmol) of 6 was O-deacetylated with methanolic sodium methoxide, and the syrupy product was purified by chromatography on a column of silica gel with 3:1 chloroform-methanol, to give 6 (31 mg, 78%) as a syrup.

Anal. Calc. for $C_9H_{17}NO_5 \cdot 1.5 H_2O$: C, 43.90; H, 8.19; N, 5.69. Found: C, 43.77; H, 7.90; N, 5.47.

^{*}Cyclitol numbering. Side chain is C-7.

NOTE 363

ACKNOWLEDGMENTS

The 500-MHz n.m.r. spectrometer was provided by the Danish Natural Science Research Council and the Carlsberg Foundation.

REFERENCES

- S. OGAWA, M. ARA, T. KONDOH, M. SAITOH, R. MASUDA, T. TOYOKUNI, AND T. SUAMI, Bull. Chem. Soc. Jpn., 53 (1983) 1121–1126.
- 2 S. OGAWA AND M. ORIHARA, Carbohydr. Res., 177 (1988) 199-212.
- 3 K. Bock, J. F. B. Guzman, and S. Ogawa, Carbohydr. Res., 174 (1988) 354-359.
- 4 S. OGAWA, N. SASAKI, T. NOSE, Y. YATO, T. TAKAGAKI, AND T. SUAMI, Abstr. Eur. Symp. Carbohydr., Third, Grenoble, France, 1985, B4-110.
- 5 S. OGAWA, M. SUZUKI, AND T. TONEGAWA, Bull. Chem. Soc. Jpn., 61 (1988) 1824-1826.
- 6 W. P. AUE, E. BARTHOLDI, AND R. R. ERNST, J. Chem. Phys., 64 (1976) 2229-2246.
- 7 G. A. PEARSON, J. Magn. Reson., 64 (1987) 487-500.
- 8 CAGPLUS, Bruker ABACUS program, ABA037.
- 9 C. A. G. HAASNOOT, F. A. A. M. DE LEEUW, AND C. ALTONA, Tetrahedron, 36 (1980) 2783-2802.
- 10 K. IZUMI, Carbohydr. Res., 170 (1987) 19-25.
- 11 Y. Nishida, H. Hori, H. Ohrui, and H. Meguro, Carbohydr. Res., 170 (1987) 106-111.
- 12 K. BOCK AND H. PEDERSEN, Acta Chem. Scand., Ser. B, 42 (1988) 190-195.
- 13 K. BOCK AND H. THØGERSEN, Annu. Rep. NMR Spectrosc., 13 (1982) 1-57.
- 14 H. OHRUI, Y. NISHIDA, H. HIGUCHI, H. HORI, AND H. MEGURO, Can. J. Chem., 65 (1987) 1145– 1153.
- 15 D. R. BUNDLE, H. J. JENNINGS, AND I. C. P. SMITH, Can. J. Chem., 51 (1973) 3812-3819.